Estimating Live Forest Carbon Dynamics with a Landsat-based Curve-fitting Approach
نویسندگان
چکیده
Direct estimation of aboveground biomass with spectral reflectance data has proven challenging for high biomass forests of the Pacific Northwestern United States. We present an alternative modeling strategy which uses Landsat’s spatial, spectral and temporal characteristics to predict live forest carbon through integration of stand age and site index maps and locally calibrated Chapman-Richards curves. Predictions from the curve-fit model were evaluated at the local and landscape scales using two periods of field inventory data. At the pixel-level, the curve-fit model had large positive bias statistics and at the landscape scale over-predicted study area carbon for both inventory periods. Despite the over-estimation, the change in forest carbon estimated by the curve-fit model was well within the standard error of the inventory estimates. In addition to validating the curve-fit models carbon predictions we used Landsat data to evaluate the degree to which the field inventory plots captured the forest conditions of the study area. Landsat-based frequency histograms revealed the systematic sample of inventory plots effectively captured the broad range of forest conditions found in the study area, whereas stand age trajectories revealed a temporally punctuated shift in landuse which was not spectrally detected by the inventory sample.
منابع مشابه
Quantifying Multi-Decadal Change of Planted Forest Cover Using Airborne LiDAR and Landsat Imagery
Continuous monitoring of forest cover condition is key to understanding the carbon dynamics of forest ecosystems. This paper addresses how to integrate single-year airborne LiDAR and time-series Landsat imagery to derive forest cover change information. LiDAR data were used to extract forest cover at the sub-pixel level of Landsat for a single year, and the Landtrendr algorithm was applied to L...
متن کاملAboveground Forest Biomass Trends for the Conterminous U.s. Inferred from Landsat Time-series and Field Inventory Data
We used a sample of Landsat time-series stacks (LTSS) across the conterminous U.S., calibrated with Forest Inventory and Analysis (FIA) plot-level biomass data to estimate 20+ year trends in live, aboveground biomass. To help overcome some of the limitations associated with optical remote sensing of biomass stocks, we employed a pixel-level curve-fitting algorithm to leverage the information co...
متن کاملEvaluating the Remote Sensing and Inventory-Based Estimation of Biomass in the Western Carpathians
Understanding the potential of forest ecosystems as global carbon sinks requires a thorough knowledge of forest carbon dynamics, including both sequestration and fluxes among multiple pools. The accurate quantification of biomass is important to better understand forest productivity and carbon cycling dynamics. Stand-based inventories (SBIs) are widely used for quantifying forest characteristic...
متن کاملEstimation of Forest Canopy Height and Aboveground Biomass from Spaceborne LiDAR and Landsat Imageries in Maryland
Mapping the regional distribution of forest canopy height and aboveground biomass is worthwhile and necessary for estimating the carbon stocks on Earth and assessing the terrestrial carbon flux. In this study, we produced maps of forest canopy height and the aboveground biomass at a 30 m spatial resolution in Maryland by combining Geoscience Laser Altimeter System (GLAS) data and Landsat spectr...
متن کاملPotential of Landsat-8 spectral indices to estimate forest biomass
Forest ecosystems are among the largest terrestrial carbon reservoirs on our planet earth thus playing a vital role in global carbon cycle. Presently, remote sensing techniques provide proper estimates of forest biomass and quantify carbon stocks. The present study has explored Landsat-8 sensor product and evaluated its application in biomass mapping and estimation. The specific objectives were...
متن کامل